Executable Proofs, Input-Size Hiding Secure Computation and a New Ideal World

نویسندگان

  • Melissa Chase
  • Rafail Ostrovsky
  • Ivan Visconti
چکیده

In STOC 1987, Goldreich, Micali and Wigderson [GMW87] proved a fundamental result: it is possible to securely evaluate any function. Their security formulation consisted of transforming a real-world adversary into an ideal-world one and became a de facto standard for assessing security of protocols. In this work we propose a new approach for the ideal world. Our new definition preserves the unconditional security of ideal-world executions and follows the spirit of the real/ideal world paradigm. Moreover we show that our definition is equivalent to that of [GMW87] when the input size is public, thus it is a strict generalization of [GMW87]. In addition, we prove that our new formulation is useful by showing that it allows the construction of protocols for input-size hiding secure two-party computation for any two-party functionality under standard assumptions and secure against malicious adversaries. More precisely we show that in our model, in addition to securely evaluating every twoparty functionality, one can also protect the input-size privacy of one of the two players. Such an input-size hiding property is not implied by the standard definitions for two-party computation and is not satisfied by known constructions for secure computation. This positively answers a question posed by [LNO13] and [CV12]. Finally, we show that obtaining such a security notion under a more standard definition (one with a more traditional ideal world) would imply a scheme for “proofs of polynomial work”, a primitive that seems unlikely to exist under standard assump-

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Secure Database Commitments and Universal Arguments of Quasi Knowledge

In this work we focus on a simple database commitment functionality where besides the standard security properties, one would like to hide the size of the input of the sender. Hiding the size of the input of a player is a critical requirement in some applications, and relatively few works have considered it. Notable exceptions are the work on zero-knowledge sets introduced in [MRK03], and recen...

متن کامل

Hiding the Input-Size in Secure Two-Party Computation

In the setting of secure multiparty computation, a set of parties wish to compute a joint function of their inputs, while preserving properties like privacy, correctness, and independence of inputs. One security property that has typically not been considered in the past relates to the length or size of the parties inputs. This is despite the fact that in many cases the size of a party’s input ...

متن کامل

Novel Framework for Hidden Data in the Image Page within Executable File Using Computation between Advanced Encryption Standard and Distortion Techniques

---The hurried development of multimedia and internet allows for wide distribution of digital media data. It becomes much easier to edit, modify and duplicate digital information. In additional, digital document is also easy to copy and distribute, therefore it may face many threats. It became necessary to find an appropriate protection due to the significance, accuracy and sensitivity of the i...

متن کامل

How to Simulate It in Isabelle: Towards Formal Proof for Secure Multi-Party Computation

In cryptography, secure Multi-Party Computation (MPC) protocols allow participants to compute a function jointly while keeping their inputs private. Recent breakthroughs are bringing MPC into practice, solving fundamental challenges for secure distributed computation. Just as with classic protocols for encryption and key exchange, precise guarantees are needed for MPC designs and implementation...

متن کامل

A Novel Threshold Secret Sharing Scheme Using FFT Algorithm

Secret sharing schemes (SSS) are very important, because they are used in critical applications such as e-voting, cryptographic key distribution and sharing, secure online auctions, information hiding, and secure multiparty computation. We explained some popular algorithms of secret sharing such as threshold, graph, and visual schemes and their access structures. Besides, we discussed the limit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015